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Abstract Comparison of a group of multiple observer
segmentations is known to be a challenging problem. A good
segmentation evaluation method would allow different
segmentations not only to be compared, but to be combined
to generate a “true” segmentation with higher consensus.
Numerous multi-observer segmentation evaluation
approaches have been proposed in the literature, and
STAPLE in particular probabilistically estimates the true
segmentation by optimal combination of observed segmenta-
tions and a prior model of the truth. An Expectation–
Maximization (EM) algorithm, STAPLE’s convergence to
the desired local minima depends on good initializations for

the truth prior and the observer-performance prior. However,
accurate modeling of the initial truth prior is nontrivial.
Moreover, among the two priors, the truth prior always
dominates so that in certain scenarios when meaningful
observer-performance priors are available, STAPLE can not
take advantage of that information. In this paper, we propose
a Bayesian decision formulation of the problem that permits
the two types of prior knowledge to be integrated in a
complementary manner in four cases with differing appli-
cation purposes: (1) with known truth prior; (2) with
observer prior; (3) with neither truth prior nor observer
prior; and (4) with both truth prior and observer prior. The
third and fourth cases are not discussed (or effectively
ignored) by STAPLE, and in our research we propose a new
method to combine multiple-observer segmentations based
on the maximum a posterior (MAP) principle, which
respects the observer prior regardless of the availability of
the truth prior. Based on the four scenarios, we have
developed a web-based software application that imple-
ments the flexible segmentation evaluation framework for
digitized uterine cervix images. Experiment results show
that our framework has flexibility in effectively integrating
different priors for multi-observer segmentation evaluation
and it also generates results comparing favorably to those
by the STAPLE algorithm and the Majority Vote Rule.
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1 Introduction

Segmentation is a fundamental problem in many pattern
recognition and image processing applications. Segmenta-
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tions can be generated by different automated computer
methods or by human observers. Multiple-observer seg-
mentation evaluation is helpful in many scenarios. Some
examples are: (a) evaluating performance of multiple
observers’ segmentations simultaneously [1]; (b) measuring
segmentation complexity [2]; (c) combining multiple
observers’ segmentations to generate the ground-truth
segmentation. STAPLE [1] is an algorithm proposed for
the first scenario.

In STAPLE, two different kinds of prior knowledge can
be integrated. One is the truth prior, which specifies the
probability of each pixel being inside the segmentation.
This information can be obtained through training a
statistical atlas. The other is the observer-performance (or
observer) prior, which specifies prior knowledge about the
performance level of each observer, often quantified by two
performance parameters, sensitivity and specificity (Section
2.2). However, the role of the two priors is not balanced in
the STAPLE algorithm. The truth prior is heavily depended
on, and it almost always dominants over the observer prior
so that the observer prior has little effect on the final
evaluation result. Since the truth prior is often unknown and
an estimated prior is used instead, the evaluation result is
often not in agreement with the initial performance
measures of observers. As pointed out in [1], if this was
discovered in the application, it would indicate either the
need to re-evaluate the global prior assumption or the need
for improved training of the experts generating the
segmentations. However these recommendations do not
address the lack of truth prior or the discrepancy caused by
inconsistent truth and observer priors. In certain situations,
the performance measures of multiple observers’ segmenta-
tions are known in advance to some extent. For instance, let
us consider an observer which is an automated segmenta-
tion algorithm, we will know if the algorithm tends to
perform conservatively thus has a low specificity. For
manual segmentations, we can assume that segmentations
made by experts have higher sensitivity and specificity than
those by non-experts. In these situations, we would desire
evaluation results that are consistent with the known
observer-performance priors.

Based on the above observations, we propose a different
framework based on the Bayesian Decision Theory and the
MAP optimization principle for the multiple-observer
segmentation evaluation problem. The framework is based
on different segmentation evaluation needs and different
prior knowledge available. One need is to estimate the
ground-truth segmentation and observer performance lev-
els, with or without the truth prior probability. The other
need is to combine the segmentations from observers with
different measures of performance. To address the first
need, if the truth prior is unknown, the observers are treated
equally as experts with high sensitivity and specificity. The

truth prior probability is estimated by averaging all observer
segmentations then integrated in the MAP estimation. If a
reliable truth prior is available, it will be used directly. To
address the second need where we know a priori some
observers’ sensitivity and specificity, the MAP solution
combines these performance measures to compute a ground
truth map which is consistent with the known measures.
The estimated ground truth can then be used to evaluate
other observers whose performance measures are unknown.
For validation purposes, gold-standard ground truth seg-
mentation can be acquired in phantom experiments or by
multiple-observer consensus to compare with the estimated
ground truth.

We developed an online software system to evaluate
multi-observer segmentations for medical images such as
those in the NCI/NLM medical repository of digital
cervicographic images (cervigrams) [3]. The total 939
images were collected as part of a study for the evolution
of lesions related to cervical cancer conducted by the
National Cancer Institute (NCI) together with the National
Library of Medicine (NLM) through two major studies in
Costa Rica and the United States, the Guanacaste and
ALTS1 projects, respectively [19]. In these studies, multiple
observers (or raters) have marked several important regions
on cervigrams that are of anatomical or clinical interest,
including the cervix boundary and acetowhite regions.
They were clinicians with expertise in colposcopy that
were identified by members of the Board of Directors of the
American Society for Colposcopy and Cervical Pathology
and by staff at the National Cancer Institute. They included
12 general gynecologists and 8 gynecologist oncologists.
18 of them work in academic settings and 2 in private
practice. They have varies of years of experience. In the
studies, the total number of subjects was also 939 (one
cervigram per subject). The cervix boundary defines the
region of the uterine cervix, which is of anatomic interest
within the cervigrams. The acetowhite regions are epithe-
lium with whitened appearance, which is visible for a short
period of time following the application of 3% to 5% acetic
acid. Some acetowhite regions correlate with uterine cervix
cancer progression, and thus are of clinical significance.
Examples of these marked regions are shown in Fig. 1.
Each cervigram has associated with a different number of
manual markings varying from one to twenty. In this paper,
we consider combining multiple observers’ segmentations
of the cervix boundary (yellow line in Fig. 1), and our
software can be used to evaluate these multi-observer
segmentations in different scenarios.

The remainder of this paper is organized as follows. In
Section 2, we discuss previous work and our choice for
multiple-observer segmentation measures. In Section 3, we
discuss previous work on combining multiple-observer
segmentations. We introduce the STAPLE algorithm [1]
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and identify its limitation. We then describe our framework
and algorithms for different multiple-observer segmentation
evaluation scenarios in Section 4. The web-based multiple-
observer segmentation evaluation software developed based
on our method is presented in Section 5, and we
demonstrate experimental results and comparison with
previous work in Section 6 by using the multiple observer
manual segmentations. In Section 7, we also demonstrate
experimental results but by using manual segmentation
results to evaluate our automatic segmentation method.
Section 8 concludes the paper with discussion of future
work.

2 Multiple Observer Segmentation Measures

2.1 Previous Work on Segmentation Evaluation Metrics

A number of metrics have been proposed to compare
segmentations. Generally the evaluation methods of image
segmentation can be classified into three categories [4]:

analytical methods, empirical goodness methods and
empirical discrepancy methods. Analytical methods are
not used to judge the performance of segmentation methods
but their properties, principles, complexity, requirement and
so forth. Empirical goodness methods are used to compute
some manner of “goodness” criterion such as uniformity
within regions, contrast between regions, shape of segmen-
tation regions and so forth. The empirical discrepancy
methods evaluate segmentation methods by comparing the
segmented image against a manually segmented reference
image, which is often referred as the ground truth, and
computing error measures. The empirical discrepancy
methods have been the most commonly used methods for
segmentation evaluation.

Reviewing work in the literature, one can find two kinds
of empirical discrepancy methods: (1) region-based evalu-
ation, which evaluates segmentation consensus in terms of
the number of regions, and the locations, sizes and other
statistics of the segmented regions, and (2) boundary-based
evaluation, which evaluates segmentation in terms of both
the location and shape accuracies of the extracted region
boundaries. The segmentation performance-level criteria in
region-based evaluation can be: (a) sensitivity and speci-
ficity, where sensitivity is defined as “true positive
fraction”, and specificity is “true negative fraction” [1],
(b) correctness and completeness, or precision and recall
[17, 18], where high completeness means that the region
segmented has covered the relevant pattern well, whereas
high correctness implies that the region segmented does not
contain many (incorrect) irrelevant patterns, (c) the number
of misclassified pixels and their distances to the nearest
correctly segmented pixels [5], (d) measures based on
hamming distance between two segmentations [6], (e) local
consistency error which quantifies the consistency between
image segmentations of differing granularities [7], (f)
bidirectional consistency error which penalizes dissimilarity
between segmentations proportional to the degree of region
overlap [7], and (g) partition distance which is defined as
“given two partitions P and Q of S, the partition distance is

Figure 1 Several regions marked on cervigrams.
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Figure 2 The relationship
between sensitivity p and
specificity q, and typical (p, q)
values of medical experts and
non-experts.
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the minimum number of elements that must be deleted from
S, so that the two induced partitions (P and Q restricted
to the remaining elements) are identical” [8]. On the
other hand, the performance-level criteria in boundary-
based evaluation can be: (a) distance of distribution
signatures which is based on the distance between
distribution signatures that represent boundary points of
two segmentation masks [6], (b) precision-recall measure-
ment which uses precision and recall values to character-
ize the agreement between the oriented boundary edge
elements of two segmentations’ region boundaries [7], and
(c) a new discrepancy measure [9] which takes into
account not only the consensus of the localized boundaries
of the created segments but also under-segmentation and
over-segmentation.

A good evaluation method would allow segmentations
by different approaches not only to be compared, but to be
integrated to generate segmentation with higher consensus.
In our framework, we choose to use the region-based
evaluation metric: sensitivity and specificity, which can be
incorporated into our framework in combining multiple-
observer segmentations.

2.2 Measures of Performance in Our Framework:
Sensitivity and Specificity

In the NCI cervigram database, we have segmentations of
regions marked by 20 observers. Since these markings can
vary in size and location it is essential that we have
measures to evaluate these multi-observer segmentations.
We choose sensitivity p and specificity q to measure the
performance level of each binary segmentation.

Sensitivity is the “true positive fraction” and defined as

Sensitivity ¼ TP

TPþ FN
ð1Þ

where TP is the number of true positive pixels and FN is
the number of false negative pixels. That is, sensitivity
means the percentage of pixels properly included in the
segmentation result out of all pixels in the segmentation
result.

Specificity is the “true negative fraction” and defined as

Specificity ¼ TN

TNþ FP
ð2Þ

1.0 0.49

(a) (b)

Figure 3 a Two observers’
segmentations of acetowhite
regions. b Multi-expert ground
truth map.

Table 1 Configurations in the
first group of experiments
demonstrating that the initial
(p, q) values have little effect
on the result of the STAPLE
algorithm.

Experiment Global ground-
truth prior γ

Value Observer
1 (red)

Observer
2 (blue)

Estimated ground
truth map

Experiment 1 (STAPLE) Average Initial p 0.9999 0.9999 Fig. 4b
Initial q 0.9999 0.9999
Final p 0.728 0.987
Final q 0.972 0.862

Experiment 2 (STAPLE) Average Initial p 0.9999 0.9999 Fig. 4c
Initial q 0.9999 0.5
Final p 0.753 0.943
Final q 0.9999 0.847

Experiment 3 (STAPLE) Average Initial p 0.5 0.9999 Fig. 4d
Initial q 0.9999 0.9999
Final p 0.705 0.975
Final q 0.9999 0.876

Y. Zhu et al.



where TN is the number of true negative pixels and FP is
the number of false positive pixels. So specificity means the
percentage of pixels properly excluded from the segmenta-
tion result out of all pixels outside of the ground truth.

The relationship of sensitivity p and specificity q in a
binary segmentation can be easily understood through the
diagram in Fig. 2. The pixels labeled 1 are inside the
segmentation (foreground) and those labeled 0 are outside
(background). Different observers may have different (p, q)
values; for instance, medical experts have higher (p, q)

values while inexperienced non-experts may have lower
ones (Fig. 2).

The similar measures to sensitivity and specificity are
correctness and completeness, or precision or recall, which
are defined as follows:

Correctness ¼ TP

TPþ FP

Specificity ¼ TP

TPþ FN

(a) (b)

(c) (d)
Figure 4 Estimated ground truth maps by STAPLE in the first group of experiments (Table 1). a Original image. b Result from Experiment 1. c
Result from Experiment 2. d Result from Experiment 3.

Table 2 Configurations in the
second group of experiments,
demonstrating the dominant
effect of the truth prior
probability in STAPLE.

Experiment γ Value Observer 1 (red) Observer 2 (blue) Ground
truth map

Experiment 1 (STAPLE) 0.5 Initial p 0.9999 0.9999 Fig. 5b
Initial q 0.9999 0.9999
Final p 0.563 0.931
Final q 0.9999 0.9999

Experiment 2 (STAPLE) 0.2 Initial p 0.9999 0.9999 Fig. 5c
Initial q 0.9999 0.9999
Final p 0.9999 0.9999
Final q 0.974 0.759

Experiment 3 (STAPLE) 0.2 Initial p 0.5 0.9999 Fig. 5d
Initial q 0.9999 0.9999
Final p 0.9999 0.9999
Final q 0.974 0.759

The role of priors in multi-observer segmentation evaluation



3 Background on Multiple Observer Segmentation
Combination Methods

There are a number of combination methods proposed in
the literature for different cases of integrating multi-
observer segmentations to derive a final segmentation.

These include class probability combining strategies such
as the Min Rule, the Max Rule, the Median Rule and the
Majority Vote Rule [10]. For instance, the Majority Vote
Rule chooses the segmentation label for each pixel based
on what the majority of observers agree on; this simple
method, however, does not take into consideration the

(a) (b)

(c) (d)
Figure 5 Estimated ground truth maps by STAPLE in the second group of experiments (Table 2). a original image. b Result from Experiment 1.
c Result from Experiment 2. d Result from Experiment 3.

Web

Web 

browser

Application

Server

Figure 6 The architecture of the software system.
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variability in quality or performance among the voters and
also does not incorporate the prior knowledge regarding
segmentations. There are also combination strategies that
assume each classifier has expertise in a subset of the
decision domain [11–13], and strategies [14, 15] that can
account for different confidence or uncertainty levels in
segmentations.

The result after probabilistically combining multiple
observer segmentations is usually presented in a multiple-
observer ground truth map. One example is shown in
Fig. 3. In Fig. 3a, two observers have marked the
acetowhite regions (in red line and in blue line). Figure 3b

shows the corresponding ground truth map after combining
the two segmentations, and in this map, each pixel is
represented by a color indicating the probability that
belongs inside the ground truth segmentation.

3.1 STAPLE Algorithm

The STAPLE algorithm is a well-known method proposed
by Warfield et al. [1], for generating ground truth
segmentation maps from the observations of multiple
observers and measuring the performance levels of each
of the observers.

(a) (b)

(c)
Figure 7 User interfaces of the web-based software tool. a Image and segmentation loading and viewing. b Submitting the job to the server. c
Ground truth map and the original image.
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3.1.1 Notations

Let us suppose there are N pixels in the image whose
segmentations are being evaluated by a total of R observers.
The following notations are used in describing the STAPLE
algorithm.

A. p=(p1, p2, ..., pR)
T is a column vector of R elements,

with each element a sensitivity parameter charactering
one of the R segmentations;

B. q=(q1, q2, ..., qR)
T is a column vector of R elements,

with each element a specificity parameter charactering
one of the R segmentations;

C. D: an N×R matrix describing the binary decisions
made for each segmentation;

D. T: an indicator vector of N elements, representing the
hidden binary true segmentation. For a pixel i, the
structure of interest is recorded as present (Ti=1) or
absent (Ti=0);

E. γ=f(Ti=1), i=1,..., N: the global prior probability of
(Ti=1), assuming equal prior probability at every pixel.

3.1.2 Algorithm

STAPLE is an EM (Expectation–Maximization) algorithm
and estimates simultaneously the true segmentation T and
performance level parameters of observers characterized by

parameters (p and q in this case). It aims to maximize the
complete data log likelihood:

ðbp;bqÞ ¼ argmax ln f
p;q

ðD; T jp; qÞ ð3Þ

Like other EM algorithms, the STAPLE algorithm has
two steps: the Expectation (E) step and the Maximization
(M) step. In the E step, it computes an expectation of the
likelihood at each iteration k:

f TijDi; p
k�1ð Þ; q k�1ð Þ

� �
¼

Q
j f DijjTi; p k�1ð Þ

j ; q k�1ð Þ
j

� �
f Tið ÞP

T
0
i

Q
j f Dij

��T 0
i ; p

k�1ð Þ
j ; q k�1ð Þ

j

� �
f T

0
ið Þ

ð4Þ

where the posterior probability of the true segmentation at
each pixel is

Wi ¼ f Ti ¼ 1jDi; p
k�1ð Þ; q k�1ð Þ

� �
¼ f Ti ¼ 1ð Þαi

f Ti ¼ 1ð Þαi þ 1� f Ti ¼ 1ð Þð Þβi
:

ð5Þ

In the above definition for the posterior ground truth
segmentation, f(Ti=1) is the truth prior probability, αi is the
conditional data probability f (Di=1|Ti=1,p

(k−1), q(k−1)),

(a)  (b) (c)
Figure 8 Estimated ground truth maps with the setups in Table 3. a original image. b Result for Experiment 1. c Result for Experiment 2.

Table 3 Initial (p, q) values
with t=0.9999 and t=0.7. Experiment γ Value Observer 1 (red) Observer 2 (green) Observer 3 (blue) Result

Experiment 1 0.5 Initial p 0.9999 0.9999 0.9999 Fig. 8b
Initial q 0.9999 0.9999 0.9999
Final p 0.893 0.983 0.986
Final q 0.946 0.971 0.969

Experiment 2 0.5 Initial p 0.7 0.7 0.7 Fig. 8c
Initial q 0.7 0.7 0.7
Final p 0.893 0.983 0.986
Final q 0.946 0.971 0.969
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and βi is the conditional data probability f (Di=0|Ti=1,
p(k−1), q(k−1)):

αi ¼ Π
j:Dij¼1

p k�1ð Þ
i Π

j:Dij¼0
1� p k�1ð Þ

j

� �
;

βi ¼ Π
j:Dij¼0

q k�1ð Þ
i Π

j:Dij¼1
1� q k�1ð Þ

j

� � ð6Þ

In the M step, it estimates the observers’ performance
level parameters, p and q, that maximize the conditional
expectation of the complete data log likelihood function.

p kð Þ
j ¼

P
i:Dij¼1 W

k�1ð Þ
iP

i W
k�1ð Þ

i

; q kð Þ
j ¼

P
i:Dij¼0 1�W k�1ð Þ

i

� �
P

i 1�W k�1ð Þ
i

� �
ð7Þ

If the difference between (p, q) values at the k−1 and k
steps is small enough, the algorithm is considered con-
verged. Then it outputs the final (p, q) values and the
ground truth map Wi. In STAPLE, there are three inputs that
are needed: the multiple observer segmentations D, the
initial (p, q) values for each segmentation, and the ground-
truth segmentation prior probability f(Ti=1).

3.2 Limitation of the STAPLE Algorithm

As described above, besides the multiple observer segmen-
tation data, there are two kinds of priors that are necessary
inputs to the STAPLE algorithm: the truth prior probability
f(Ti=1), and the observer prior represented by the initial (p,
q) values for each observer’s segmentation. However, as
noticed by the STAPLE authors [1] and by us through
extensive experiments, the truth prior almost always

dominates the observer prior so that the initial (p, q)
observer performance-level values have little effect on the
final posterior segmentation. Indeed the converged result on
(p, q) by STAPLE often contradicts the initial (p, q) prior.
We believe this discrepancy is caused by the independence
assumption made by STAPLE—the ground truth T is
independent of the performance level parameters so that f
(T, p, q)= f(T)f(p, q). It is obvious from the definitions of
sensitivity p (Eq. 1) and specificity q (Eq. 2) that (p, q) are
not independent of T. Having this independence assump-
tion separates the influence of the truth prior from that of
the observer performance-level prior. In practice, this
manifests in a way that STAPLE can not deal with the
scenario when the (p, q) values for each observer’s
segmentation are known. Moreover, the truth prior is often
unknown and an estimated prior is used instead; if the
estimated prior is far-off from the ground truth segmenta-
tion, the negative effect of the lack of prior can get
magnified. This limitation of the STAPLE algorithm can be
seen from the following experiments. In the first group of
experiments (Table 1 and Fig. 4), the truth prior probability
is not available and it is estimated as the average of the
relative proportion of the labels (1 or 0) in the multiple-
observer segmentations. Therefore the value of the prior
probability is kept the same for all three experiments. We
vary the initial (p, q) values of the two observers in
different experiments: in Experiment 1, both observers are
set as experts with high (p, q) values; in Experiment 2,
observer 1 is set as an expert and observer 2 as a non-
expert; the configurations in Experiment 3 is on the
contrary to Experiment 2. Using the sample mean of the
multi-observer segmentations as the truth prior, one can see

Table 4 Truth prior
probability and (p, q)
values initialized with
observer data.

Experiment γ Value Observer 1 (red) Observer 2 (green) Observer 3 (blue) Result

Experiment 1 0.710 Initial p 0.893 0.983 0.986 Fig. 9b
Initial q 0.946 0.971 0.969
Final p 0.893 0.983 0.986
Final q 0.946 0.971 0.969

(a) (b)

Figure 9 Ground truth map
with the setup of Table 4. a
original image. b Result for
Experiment 1.

The role of priors in multi-observer segmentation evaluation



from Table 1 that: (1) the final estimated ground truth map
by STAPLE is close to that generated by the majority vote
rule, (2) the differing observer-performance prior (p, q)
values have little effect on the estimated ground truth map,
and (3) the converged (p, q) values can deviate greatly from
the initial (p, q) values which indicates that the observer
prior was overwhelmed by the truth prior (Table 1; Fig. 4).

In the second group of experiments (Table 2 and Fig. 5),
we specify different truth prior probability with different (p,
q) values across experiments. In Experiment 1, the truth
prior probability is set to be closer to the segmentation by
Observer 2 (γ=0.5), while in experiments 2 and 3, the truth
prior is closer to the segmentation by Observer 1 (γ=0.2).
These experiments clearly show that the truth prior

probability has dominant effect on the estimated ground
truth map at the converged local minima in the STAPLE
algorithm. Experiment 3 in particular is interesting. In that
experiment, we set Observer 1 as a non-expert and
Observer 2 as an expert thus the truth prior probability is
not in agreement with the prior performance measures of
the two observers’ segmentations. The converged results
from the STAPLE algorithm are consistent with the truth
prior probability instead of the observer performance-
measure prior values. Experiment 3 clearly demonstrates
that, even when reliable information about observer
performance measures is available, we still have to get the
correct truth prior in order to obtain meaningful results
using STAPLE (Table 2; Fig. 5).

(a) (b)

(c) (d)

Figure 10 Estimated ground
truth maps with the setups in
Table 5. a Original Image.
b Result for Experiment 1.
c Result for Experiment 2.
d Result for Experiment 3.

Table 5 The initial and final
(p, q) values in the STAPLE
algorithm, and majority
vote rule.

Experiment Value Observer
1 (red)

Observer
2 (green)

Observer
3 (blue)

Result

Experiment 1 (STAPLE) Initial p 0.9999 0.9999 0.9999 Fig. 10b
Initial q 0.9999 0.9999 0.9999
Final p 0.891 0.982 0.985
Final q 0.942 0.972 0.971

Experiment 2 (STAPLE) Initial p 0.7 0.7 0.7 Fig. 10c
Initial q 0.7 0.7 0.7
Final p 0.891 0.982 0.985
Final q 0.942 0.972 0.971

Experiment 3
(Majority Vote Rule)

Initial p N/A N/A N/A Fig. 10d
Initial q
Final p
Final q

Y. Zhu et al.



4 Problem Formalization and Algorithms
in Our Framework

As demonstrated above, STAPLE effectively ignores the
observer performance measure prior. Indeed in the deriva-
tion of STAPLE [1], the observer performance prior
probability f(p, q) was cancelled out by making the
independence assumption between T and (p, q) values.
The result of this cancellation is that there is no way to
inject prior knowledge about individual observer’s perfor-
mance level in the STAPLE framework. Furthermore, the
ground truth prior probability has shown dominant effect on
the estimated posterior ground truth map and the estimated
performance measures (Tables 1 and 2, Figs. 4 and 5),
which is not always desirable because oftentimes we do not
have reliable information about the truth prior. We argue
that these limitations stem from the independence assump-
tion because based on either the standard definitions for
sensitivity and specificity (Section 2.2) or the definitions in
STAPLE (pj=Pr(Dij=1|Ti=1), qj=Pr(Dij=0|Ti=0)), p and q
are fully dependent on D and T. That is, given segmentation
data decisions D and the ground truth T, the performance
measures of any Observer j, pj and qj, are uniquely
determined.

Based on the above analysis, we propose a new
framework for multiple observer segmentation evaluation,
which is more general than STAPLE. We explicitly take

into account different kinds of prior knowledge that are
available and apply different methods in different scenarios.
The two kinds of prior knowledge that can be injected into
our framework are: the (ground) truth prior (γ= f(Ti=1)),
and the observer performance-level prior (p, q) values. If a
certain prior is unknown, it can be initialized with uniform
distribution or initialized based on observers’ segmentation
data.

The overall theoretical framework is based on the
Bayesian Decision Theory [16], which aims to make a
decision based on the posterior probability distribution,
f(T|D). The standard maximum a posteriori (MAP)
estimator can be applied to select the most probably
ground truth T:

T* ¼ argmax
T

f T Djð Þ ð8Þ

where

f T Djð Þ ¼ f D Tjð Þf Tð Þ
f Dð Þ ¼ f D Tjð Þf Tð ÞP

T
f D Tjð Þf Tð Þ ð9Þ

For pixel i, let

Ai ¼ f Dij Ti ¼ 1j� �
f Ti ¼ 1ð Þ ¼ Π

j:Dij¼1
pj Π

j:Dij¼0
1� pj
� �� �

f Ti ¼ 1ð Þ

ð10Þ

Table 6 (p, q) values for
experiments of scenario two:
with known p and q values for
each observer.

Experiment Value Observer 1 (red) Observer 2 (green) Observer 3 (blue) Result

Experiment 1 Initial p 0.9999 0.9999 0.9999 Fig. 11b
Initial q 0.9999 0.9999 0.9999
Final p 0.893 0.983 0.986
Final q 0.946 0.971 0.969

Experiment 2 Initial p 0.9999 0.9999 0.9999 Fig. 11c
Initial q 0.9999 0.7 0.7
Final p 0.9999 0.981 0.984
Final q 0.958 0.751 0.75

(a) (b) (c)
Figure 11 Experimental results for scenario two: with known p and q for each observer. a Original Image. b Result for Experiment 1. c Result for
Experiment 2.
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Bi ¼ f Dij Ti ¼ 0j� �
f Ti ¼ 0ð Þ ¼ Π

j:Dij¼0
qj Π

j:Dij¼1
1� qj
� �� �

f Ti ¼ 0ð Þ

ð11Þ
Combining Eqs. 9, 10 and 11, we have:

f Ti ¼ 1 Djð Þ ¼ f D Ti ¼ 1jð Þf Ti ¼ 1ð ÞP
Ti

f D Tijð Þf Tið Þ ¼ Ai

Ai þ Bi
ð12Þ

where f(Ti=1|D) indicates the posterior probability of the
true segmentation at pixel i being equal to one. It follows
that the posterior background probability f(Ti=0|D)=(1− f
(Ti=1|D). Thus the MAP estimator (Eq. 8) will assign the
class label of pixel i to be 1 (i.e. foreground pixel, Ti=1) if f
(Ti=1|D)>0.5, or assign the label 0 (i.e. background pixel,
Ti=0) if f(Ti=1|D)<0.5.

Next we discuss several scenarios with different prior
knowledge available and different application purposes.
The multi-observer segmentation evaluation algorithms in
our framework are introduced for each scenario.

4.1 Both Truth Prior Probability γ=f(Ti=1) and Observer
(p, q) Values are Known

In this scenario, we simply apply Eqs. 10, 11 and 12 with
these numbers to calculate f(Ti=1|D) and estimate the
posterior ground truth segmentation map. This case can
not be handled by STAPLE because the observer prior

would be ignored and would not have the desired effect on
the estimated ground truth segmentation.

4.2 Only Observer (p, q) Values are Known

In this scenario, we know the sensitivity and specificity of
each observer thus we can distinguish observers of different
performance levels such as experts vs. non-experts. However,
we do not know the truth prior probability f(Ti=1). In practice,
such a situation is quite common. The sensitivity and speci-
ficity for each observer can be estimated based on training
data from the observer’s past experience (manual segmenta-
tions). Or if an observer is an automated segmentation
algorithm, the (p, q) values of the observer can be estimated
based on the characteristics of the segmentation algorithm or
based on its performance on validation datasets. In this case,
we want to obtain the ground truth consistent with the known
(p, q) values of observers. Therefore the sensitivity and
specificity values can not be used as initialization values in
the EM-based STAPLE algorithm (Section 3.2). Instead we
follow the Bayesian Decision framework and calculate
directly f(Ti=1|D) using Eqs. 10, 11, and 12 with the known
(p, q) values of observers; the unknown truth prior probability
is modeled through one of two ways:

A) We assume there is no prior available about the ground
truth map and initialize with uniform distribution (i.e. f
(Ti=1)=f(Ti=0)=0.5).

Table 7 The (p, q) values in
the experiments for the case
with known p and q values for
some observers.

Experiment Value Observer
1 (red)

Observer
2 (yellow)

Observer
3 (blue)

Observer
4 (purple)

Result

Experiment 1 p 0.9999 0.9999 0.991 0.999 Fig. 12b
q 0.9999 0.9999 0.707 0.681
Known Yes Yes No No

Experiment 2 p 0.884 0.923 0.9999 0.9999 Fig. 12c
q 0.877 0.966 0.9999 0.9999
Known No No Yes Yes

(a) (b) (c)
Figure 12 Results for the experiments in which p and q values are known for some observers. a Original Image. b Result for Experiment 1. c
Result for Experiment 2.
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B) We assume the observers’ segmentation data reflect the
prior distribution of the true segmentation and thus
initialize the prior probability using the data. (STAPLE
adopts this initialization scheme in the absence of truth
prior). More specifically, we can either initialize with a
single global (homogeneous) prior γ as the sample
mean of the relative proportion of the label in the
multiple observers’ segmentations [1]:

g ¼ f Ti ¼ 1ð Þ ¼ 1

RN

XR
j¼1

XN
i¼1

Dij ð13Þ

or with a spatially varying prior map as the sample mean of
all observers’ labels:

f Ti ¼ 1ð Þ ¼ 1

R

XR
j¼1

Dij ð14Þ

Sometimes we have the performance measures of some
observers but not others. Our approach in this situation is
to use the above algorithm to estimate the ground truth,
and then the observers with unknown measures are
evaluated by comparing their segmentations to the esti-
mated ground truth. The ( p, q) values are calculated by
Eq. 1 and 2.

4.3 Only Truth Prior Probability γ= f(Ti=1) is Known

In this case, the known truth prior is directly applied in
Eq. 12, while the missing (p, q) values of each observer can
be set in two ways:

A) We assume everyone has the same performance level
thus the same (p, q) values, i.e., pi=qi=t (0< t<1). In
reality, t can be much smaller than 100%. Whenever
this value changes, the estimated ground truth proba-
bility map changes accordingly, which reflects the
changing confidence in the observers.

B) Similar to Section 4.2B), we can initialize the (p, q)
values of each observer based on the multiple
observers’ segmentation data. In this case, the
sample mean map (Eq. 14) is taken as the prior
estimate of the ground truth and a threshold of 0.5 is
applied to the probability map to obtain a binary map.
Then the initial ( p, q) values are calculated by using
Eq. 1 and 2.

4.4 No Prior Information is Known

In this scenario, initialization of the truth prior probability and
the (p, q) values of each observer in the Bayesian framework

Table 8 Initial (p, q) values
with t=0.9999. Experiment γ Value Observer

1 (red)
Observer
2 (green)

Observer
3 (blue)

Result

Experiment 1 0.3 Initial p 0.9999 0.9999 0.9999 Fig. 13b
Initial q 0.9999 0.9999 0.9999
Final p 0.893 0.983 0.986
Final q 0.946 0.971 0.969

Experiment 2 0.5 Initial p 0.9999 0.9999 0.9999 Fig. 13c
Initial q 0.9999 0.9999 0.9999
Final p 0.893 0.983 0.986
Final q 0.946 0.971 0.969

(a) (b) (c)
Figure 13 Experiment results for group one in case three: assuming all observers have equal p=q=0.9999. a Original Image. b Result for
Experiment 1. c Result for Experiment 2.
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is a combination of the initialization methods introduced in
Sections 4.2 and 4.3: the initialization of f(Ti=1) (and f(Ti=
0)) can follow either Sections 4.2A) or 4.2B); the initializa-
tion of individual observer’s (p, q) values can follow either
Section 4.3A) or 4.3B).

5 Software Development

Based on the framework we proposed, we developed a
web-based software application. The software is developed

in Java and the architecture of the software is shown in
Fig. 6.

The system consists of three components: the web
browser, the application and the server. The web browser
is accessible to users by which they download and evoke
the Java application. It is made possible by the Java Web
Start technology. The Java application has the following
features:

1) Loading and viewing the image and segmentation
information. The segmentations of multiple observers
are shown on the image in different colors selected

(a) (b) (c)

(d) (e)
Figure 14 Experiment results for group two in case three: assuming all observers have equal p=q=0.7. a Original Image. b Result for
Experiment 1. c Result for Experiment 2. d Result for Experiment 3. e Result for Experiment 4.

Table 9 Initial (p, q) values
with t=0.7. Experiment γ Value Observer

1 (red)
Observer
2 (green)

Observer
3 (blue)

Result

Experiment 1 0.2 Initial p 0.7 0.7 0.7 Fig. 14b
Initial q 0.7 0.7 0.7
Final p 0.9999 0.9999 0.9999
Final q 0.899 0.739 0.731

Experiment 2 0.3 Initial p 0.7 0.7 0.7 Fig. 14c
Initial q 0.7 0.7 0.7
Final p 0.893 0.983 0.986
Final q 0.946 0.971 0.969

Experiment 3 0.5 Initial p 0.7 0.7 0.7 Fig. 14d
Initial q 0.7 0.7 0.7
Final p 0.893 0.983 0.986
Final q 0.946 0.971 0.969

Experiment 4 0.7 Initial p 0.7 0.7 0.7 Fig. 14e
Initial q 0.7 0.7 0.7
Final p 0.877 0.954 0.958
Final q 0.9999 0.9999 0.9999
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automatically. The detailed information of segmenta-
tions is listed in a table format including user names,
colors and the initial (p, q) values. In the table, the
segmentations can be switched on or off displaying.
The color in which a segmented region boundary is
drawn can be from a color panel. Figure 7a shows the
user interface for loading and viewing the image and
segmentations.

2) Communicating with the server and displaying results.
A user may select among the different scenarios
implemented in our framework: with known (p, q)
values for each observer, with known ground-truth
prior probability (between 0 and 1), or without any
prior knowledge. Furthermore, the application also has
an option for computing the combined ground truth
map by the Majority Vote rule for comparison
purposes. After the user selects an option and sets
appropriate prior values, the application submits the
image, multiple-observer segmentation and prior infor-
mation to the server and receives evaluation results
from the server (Fig. 7b). The estimated ground truth
map is shown on the panel of the application. When
clicking a pixel on the map, its position and its
probability of being inside the true segmentation are
displayed in textboxes. The ground truth map and the
original image can also be displayed side-by-side for
comparison (Fig. 7c).

3) Exporting the final results including the posterior
ground truth map and the (p, q) values (if changed) to
files in a selected local directory. The ground truth map
is saved in the format of a grayscale image while the
final (p, q) values in text format.

4) Quick-start guide. The help documentation for a quick
start is developed with JavaHelp 2.0. It allows users to
search for keywords in the document.

The software on the server side includes a Java servlet
and algorithms. The Java servlet communicates with the
application. It receives the image, observer segmentations,
and prior information from the application and sends the
results back to the application after the algorithms finish
computing.

6 Experimental Results Using Manual Segmentations

We carried out several experiments in four scenarios as
described in Section 4 by using a subset of images from the
NCI/NLM database which contains 939 cervigrams with
multi-observer segmentation data. The image is rescaled to
half size of the original one which has the size of 2399×
1636 pixels. It is segmented by one to twenty medical
experts with varying performance level. For clarity of

Table 10 (p, q) values
initialized with data. Experiment γ Value Observer

1 (red)
Observer
2 (green)

Observer
3 (blue)

Result

Experiment 1 0.3 Initial p 0.978 0.990 0.988 Fig. 15b
Initial q 0.763 0.954 0.961
Final p 0.944 0.975 0.972
Final q 0.763 0.9999 0.9999

Experiment 2 0.5 Initial p 0.978 0.990 0.988 Fig. 15c
Initial q 0.763 0.954 0.961
Final p 0.978 0.99 0.989
Final q 0.763 0.954 0.962

(a) (b) (c)
Figure 15 Experiment results for case three with known truth prior and data-initialized (p, q). a Original Image. b Result for Experiment 1. c
Result for Experiment 2.
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presentation, we show our results on one image (Fig. 8a)
that was segmented by three observers and compare the
results with those by the STAPLE algorithm and the
Majority Vote rule. Experimental and comparison results
on other images in the database have shown similar trends.
On the example image, two observers (in green and blue
lines) give similar segmentation while the other (in red line)
is different from the two. The sensitivity and specificity
values are calculated inside the bounding box of ROI (area
of interest) and not in the whole images.

6.1 Scenario One: No Prior Information is Known

6.1.1 Results of Our Method

We initialize the truth prior probability and the observer
(p, q) values as outlined in Section 4.4:

A) Assume a single global prior probability γ=0.5 and
every observer has equal sensitivity and specificity, i.e.
pi=qi=t. We choose t=0.9999 and t=0.7 in Experi-
ments 1 and 2 respectively (Table 3; Fig. 8).

In these two experiments, the initial (p, q) values are set
differently, and one can see that the estimated ground truth
maps indicate changing probability due to changes in
observer performance-level priors. It should be noted that
although Experiment 2 has different probability map from

Experiment 1, it generates the same binary ground truth
map as Experiment 1 since we set the probability threshold
to distinguish the foreground from background equal to 0.5.
Thus the final (p, q) values are the same in these two
experiments. If the (p, q) prior values were set to be much
lower in Experiment 2, the binary ground truth map and the
final (p, q) values would differ from Experiment 1.

B) Use data to initialize the truth prior probability and the
(p, q) values of each observer (Table 4; Fig. 9).

In this case, we initialize the prior probability
(Section 4.2B) and (p, q) values (Section 4.3B) based on
the observers’ segmentation data. The resulting ground
truth map (Fig. 9b) is similar to that of the Major Vote Rule
shown in Fig. 10d.

6.1.2 Compared to the Results of STAPLE and Majority
Vote Rule

In STAPLE, since there is no prior knowledge about either
the truth prior probability or (p, q) values of each observer,
the prior probability is estimated as the sample mean of the
relative proportion of the label in the segmentation (Eq. 3).
This means that each observer is treated as equal. Since the
truth prior is the dominant prior in the STAPLE algorithm,
the results generated by STAPLE are similar to that of the
Majority Vote Rule (Fig. 10d). The initial (p, q) values for

(a) (b) (c)
Figure 16 Estimated ground truth maps with the setups in Table 13. a Original Image. b Result for Experiment 1. c Result for Experiment 2.

Table 11 STAPLE experi-
ments with known truth prior
probability and assuming equal
(p, q) for each observer:
p=q=0.9999.

Experiment γ Value Observer
1 (red)

Observer
2 (green)

Observer
3 (blue)

Result

Experiment 1 0.3 Initial p 0.9999 0.9999 0.9999 Figs. 16b
and 17bInitial q 0.9999 0.9999 0.9999

Final p 0.9999 0.9999 0.9999
Final q 0.855 0.703 0.695

Experiment 2 0.5 Initial p 0.9999 0.9999 0.9999 Figs. 16c
and 17cInitial q 0.9999 0.9999 0.9999

Final p 0.893 0.985 0.998
Final q 0.931 0.961 0.959
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each observer have little effect on the results. This can be
seen in Fig. 10b and c. The initial (p, q) values of each
observer are listed in Table 5.

Using the Majority Vote Rule, the truth prior and the
initial (p, q) values are irrelevant and the results are
completely determined by majority of the data, which is a
shortcoming of the rule (Table 5; Fig. 10).

6.2 Scenario Two: Only Observer (p, q) Values are Known

6.2.1 Results of Our Method

In the first group of experiments, we consider the case in
which the (p, q) prior values for all observers are known
(Table 6). In Experiment 1, each observer has equal (p, q)
values while in Experiment 2, Observer 1 is an expert and
Observers 2 and 3 are non-experts. The results are
consistent with the (p, q) values set for each observer. In
Experiment 2, the result leans toward the segmentation by
Observer 1, who is an expert (Fig. 11c; Table 6).

The other situation in this scenario can be that the
measures of performance are known for some observers
only. In the second group of experiments, we specify (p, q)
values for some observers (Table 7). The other observers
are evaluated by our framework (Section 4.2) and their
measures of performance are shown in Table 7 (Fig. 12).

6.2.2 Compared to the Results of STAPLE and Majority
Vote Rule

As discussed in Section 3.2, the limitation of the STAPLE
algorithm is that the truth prior probability is dominant and
the (p, q) prior values of each observer are ignored (see
Table 1, 2, 5 and Fig. 4, 5, 10). Thus the STAPLE
algorithm does not apply to this scenario. The Majority
Vote Rule generates results that depend on observer data
alone without considering prior information so it does not
apply to this scenario either.

6.3 Scenario Three: Only Truth Prior Probability γ= f(Ti=1)
is Known

6.3.1 Results of Our Framework

We initialize (p, q) values for each observer as outlined in
Section 4.3:

A) Assume every observer has equal sensitivity and
specificity, i.e. pi=qi=t. In order to see the effect of
the prior probability and (p, q) values for each
observer, we carried out two groups of experiments.
In one group, we set t=0.9999, and in the other, t=0.7.
In each group of experiments, we also changed γ
between 0.2 and 0.7.

(a) (b) (c)
Figure 17 Estimated ground truth maps with the setups in Table 14. a Original Image. b Result for Experiment 1. c Result for Experiment 2. d
Result for Experiment 3.

Table 12 STAPLE experi-
ments with known truth prior
probability and assuming equal
(p, q) for each observer:
p=q=0.7.

Experiment γ Value Observer
1 (red)

Observer
2 (green)

Observer
3 (blue)

Result

Experiment 1 0.3 Initial p 0.7 0.7 0.7 Figs. 18b
and 19bInitial q 0.7 0.7 0.7

Final p 0.9999 0.9999 0.9999
Final q 0.855 0.703 0.695

Experiment 2 0.5 Initial p 0.7 0.7 0.7 Figs. 18c
and 19cInitial q 0.7 0.7 0.7

Final p 0.893 0.985 0.998
Final q 0.931 0.961 0.959
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In the first group of experiments (Table 8), each observer
has high sensitivity and specificity thus their effect over-
whelms the effect of the prior probability (Fig. 13 and 14;
Table 8 and 9).

In the second group of experiments (Table 9), each
observer is initialized with lower sensitivity and specificity
so we clearly see the effect of the truth prior probability.

Therefore, it is recommended that when there is reliable
information about the truth prior but no knowledge about
observer performance levels, a small t value be used to
initialize the (p, q) values of each observer.

B) Use observers’ segmentation data to initialize (p, q)
values (Table 10; Fig. 15).

In this group of experiments (Table 10), each observer
has initial sensitivity and specificity calculated from the
segmentation data. We clearly see the effect on the
estimated ground truth probability map given changes in
the truth prior probability.

6.3.2 Results of STAPLE

In order to compare our results with those from the
STAPLE algorithm, we applied STAPLE with the same
configurations as in Table 8 and 9.

In the first group of experiments, as one can see, the
prior probability has a significant effect and the results are
consistent with the prior probability (Fig. 16; Table 11).

In the second group of experiments, we set (p, q) values
for each observer lower. At the same time, we change the
prior probability. The results show again that the truth prior
dominates over the observer prior (p, q) in STAPLE
(Fig. 17). By comparing the first and second groups of
experiments, one can see that the (p, q) settings do not
affect STAPLE’s final results. For instance, the resulting
ground truth map Fig. 16b is exactly the same as Fig. 17b,
and Fig. 16c the same as Fig. 17c, even though the (p, q)
values in these two groups of experiments are very
different. This again shows STAPLE’s limitation pointed
out in Section 3.2 (Table 12; Fig. 17).

6.4 Scenario Four: Both Truth Prior Probability γ= f(Ti=1)
and Observer (p, q) Values are Known

6.4.1 Results of Our Method

When we have reliable estimates of both the truth prior
probability and observer (p, q) values, our method
coherently balances their effects and integrates them in a
complementary manner. We carried out two groups of
experiments in this case. One is with higher (p, q) values

Table 13 The prior probability
and (p, q) values of each
observer for experiments in
group one.

Experiment γ Value Observer
1 (red)

Observer
2 (green)

Observer 3 (blue) Result

Experiment 1 0.3 Initial p 0.9999 0.9999 0.9999 Figs. 16b
and 17bInitial q 0.9999 0.9999 0.9999

Final p 0.893 0.983 0.986
Final q 0.946 0.971 0.969

Experiment 2 0.5 Initial p 0.9999 0.9999 0.9999 Figs. 16c
and 17cInitial q 0.9999 0.9999 0.9999

Final p 0.893 0.983 0.986
Final q 0.946 0.971 0.969

Table 14 The prior probability
and (p, q) values of each
observer for the experiments of
group two.

Experiment γ Value Observer
1 (red)

Observer
2 (green)

Observer
3 (blue)

Result

Experiment 1 0.1 Initial p 0.9999 0.9999 0.9999 Figs. 18b
and 19bInitial q 0.9999 0.7 0.7

Final p 0.9999 0.9999 0.9999
Final q 0.899 0.739 0.731

Experiment 2 0.3 Initial p 0.9999 0.9999 0.9999 Figs. 18c
and 19cInitial q 0.9999 0.7 0.7

Final p 0.9999 0.981 0.984
Final q 0.958 0.751 0.75

Experiment 3 0.5 Initial p 0.9999 0.9999 0.9999 Figs. 18d
and 19dInitial q 0.9999 0.7 0.7

Final p 0.9999 0.981 0.984
Final q 0.958 0.751 0.75
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for each observer and the other is with lower (p, q) values
for each observer. At the same time, we changed the value
of the truth prior probability. As one can see, when the
(p, q) values are very high (close to 1.0), the effect of the
observer data dominates over the truth prior probability,
while when the (p, q) values are lower indicating low
confidence in observer data, the truth prior clearly shows its
effect (Table 13 and 14; Fig. 16 and 17).

The STAPLE algorithm cannot handle this Scenario
since the truth prior probability dominates even with very
high (p, q) values for each observer.

7 Experimental Results Using an Automatic
Segmentation Method

In this experiment, we use our framework to evaluate our
automatic segmentation method [20]. First, we use the
automatic segmentation method to differentiate the acetow-
hite (AW) issue and non-AW tissue. Then we use the results
from multiple observers’ manual segmentations to evaluate
the result from the automatic segmentation method.

7.1 Automatic Classification Using Cluster Features
for Lesion Detection in Digital Cervigrams

We use a database-guided segmentation paradigm in which
we apply machine learning techniques, such as support
vector machines (SVM) to learn, from a database with
ground truth annotations provided by experts, critical visual
signs that correlate with important tissue types and to use
the learned classifier for tissue segmentation in unseen
images. The support vector machines (SVM) classifier has
been successfully applied to detecting Microcalcifications
in Mammograms and various other medical classification

problems. We use SVM to perform color-based tissue
classification in order to segment different tissue regions,
especially to segment the biomarker AW region from the
rest of the cervix. The segmentation performance is
optimized with respect to the feature color space and
granularity. We evaluate color spaces including RGB, HSV,
and L*a*b*. On different granularity of the features, we
train AW and other tissue classifiers, first using individual
pixel sample colors and then using cluster features
returned by the Mean Shift based clustering algorithm.
Cluster features greatly reduce the dimensionality of
training so that SVM is scalable to larger training sets,
while producing results with comparable accuracy. Given
a novel test image, the Mean Shift clustering algorithm
partitions the image into clusters of similar color and/or
texture, and the trained SVM classifier (on cluster features
of training data) is applied to classifying clusters in the
test image. This ground-truth database guided segmenta-
tion method is flexible in terms of the number of tissue
classes. Thus we can perform either two-label, or multi-
label classification.

7.2 Results

We demonstrate our results in one scenario where no prior
information is known. We use the segmentation data for
initializing the unknown priors: the probability prior and
the (p, q) values of multiple observers. Table 15 shows the
prior probability and (p, q) values of multiple observers
while Fig. 18 shows the original image, the result from our
automatic segmentation method and the ground truth map.
In Experiment 1 and 2, our automatic method has lower
sensitivity than specificity partly because the automatic
method excluded the os part of the cervix (Table 15;
Fig. 18).

Table 15 The prior probability
and (p, q) values of each
observer for the experiments.

Experiment γ Value Observer
1 (red)

Observer
2 (green)

Observer
3 (blue)

Automatic Result

Experiment 1 0.53 Initial p 0.9999 0.9999 0.9999 N/A Fig. 20 1c
Initial q 0.9999 0.9999 0.9999 N/A
Final p 0.902 0.979 0.964 0.74
Final q 0.99 0.965 0.861 0.865

Experiment 2 0.52 Initial p 0.9999 0.9999 0.9999 N/A Fig. 20 2c
Initial q 0.9999 0.9999 0.9999 N/A
Final p 0.93 0.984 0.971 0.873
Final q 0.995 0.954 0.92 0.929

Experiment 3 0.44 Initial p 0.9999 0.9999 0.9999 N/A Fig. 20 3c
Initial q 0.9999 0.9999 0.9999 N/A
Final p 0.995 0.843 0.754 0.805
Final q 0.669 0.97 0.954 0.801
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8 Conclusion and Future Work

In this paper, we have proposed a new method for multiple
observer segmentation evaluation based on analysis of the
STAPLE algorithm. The analysis includes different scenar-
ios that have different kinds of prior knowledge available.
We first identified a limitation of the STAPLE algorithm
which indicates that observer performance prior is effec-
tively ignored in the framework. We formulate instead a
Bayesian Decision framework that balances the roles of the
ground truth segmentation prior and observer performance-
level prior according to their availability and confidence in
their estimation. We demonstrate multi-observer segmenta-
tion evaluation results of our framework in four scenarios
with differing prior knowledge and application purposes,
and the results compare favorably to those by the STAPLE
algorithm and the Majority Vote Rule. The results also
show the flexibility of our method in effectively integrating

different priors for multi-observer segmentation evaluation.
Although we only illustrate the results by using the
cervigrams, our method can work for multi-observer
segmentation applications using any images. Currently,
our online software only allows users to submit the
segmentation information to the server in the format of
contours in order to save the transfer time. We will extend
the software to include binary images and other formats in
the future. Another missing part of our framework is to
integrate the constraints such as structure or shape
constraints since integration of more prior information will
help to generate more accurate evaluation results.

Future work also includes the following directions: (a)
the extension of our framework to multiple labels, (b) the
extension of our framework to 3D, which is pretty
straightforward. The voxels are used instead of pixels.
The ground truth map becomes a 3D probability map. All
equations in our framework remain the same as those in

1

2

3

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Figure 18 Estimated ground truth maps with the setups in Table 15.
1a Original Image. b Result for Our Automatic Segmentation Method.
c Result for Experiment 1. 2a Original Image. b Result for Our

Automatic Segmentation Method. c Result for Experiment 2. 3a
Original Image. b Result for Our Automatic Segmentation Method. c
Result for Experiment 3.

Y. Zhu et al.



2D. (c) similar to that in STAPLE, our framework can take
the spatial prior into consideration, (d) the current method
only works on a single image with multiple observers’
segmentations. It can be extended to evaluate each
observer’s performance based on their segmentations on
multiple images, (e) we plan to apply this method to
evaluating the performance of automatic segmentation
algorithms and to improving the consensus in training,
and (f) the method can be integrated in model-based
segmentation frameworks to provide feedback on how to
refine model parameters.
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